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The problem on determination of the temperature field in the cross section of a thermal tube intersecting the
zone of heat transfer to the outer surface of the tube has been solved with regard for the inhomogeneity of
the boundary conditions on the outer surface of this tube and the materials from which the body and wick of
the tube are made. It has been established that the temperature difference along the angular coordinate of
nonmetal tubes with a very inhomogeneous heat transfer on their outer surface does not exceed 0.5 K, while
this temperature difference in nonmetal tubes is more significant under adequate conditions.

Introduction. The work of thermal tubes (TT) used for stabilizing the heat conditions of power-consuming ra-
dioelectronic devices [1] can be analyzed using different models [2] defining, in more or less detail, the thermophysi-
cal processes occurring in these tubes. Of practical importance is the three-dimensional heat and mass transfer in a
small neighborhood of such thermal tubes. The characteristic cross-section sizes of the thermal tubes (several millime-
ters) used in the majority of temperature-control systems are much smaller than the sizes of units of radioelectronic
devices (tens of centimeters). However, the processes occurring in thermal tubes provide the transfer of the excess en-
ergy from the zones of relatively high temperatures to the zones of relatively low temperatures, and the heat transfer
in a small neighborhood of the thermal tubes can be three-dimensional in many cases. Up to now, there has been no
work done to solve the three-dimensional problem on the heat transfer in a thermal tube in a complete formulation,
and a pressing problem is taking into account the heat transfer in the body and wick of this tube in the peripheral
direction. On the one hand, the majority of materials from which the body and wick of thermal tubes are made [2, 3]
have a high heat conductivity; therefore, the inhomogeneity of the temperature field along the angular coordinate of a
thermal tube should be relatively small if it is made from, e.g., aluminum or its melts. On the other hand, however,
the operation of thermal tubes used in temperature-control systems of radioelectronic devices [4] and spacecraft, e.g.,
communication satellites [5], depends on the specific heat transfer from the energy sources to the evaporation zone of
a coolant. It is difficult to provide a heat flow that would be homogeneous throughout the evaporation surface.

At present, the advisability of using thermal tubes whose body or capillary system are made from composite
materials, such as ceramics, is also a question [6]. These materials have, along with obvious disadvantages (e.g., a
relatively low heat conductivity) significant advantages (a low density and a good wettability). Because of this, to
make an impartial assessment of the efficiency of thermal tubes whose body and wick are made of composite materi-
als, it is necessary to analyze the temperature fields in the cross sections of these tubes with account for the heat
transfer along their peripheral coordinate under typical operating conditions. Moreover, the miniaturization of both
power-consuming radioelectronic devices and, accordingly, the thermal tubes used for their cooling significantly com-
plicates the schemes of heat transfer to the surface of these tubes. Therefore, it is important to analyze the features of
heat transfer in thermal tubes operating under inhomogeneous conditions of delivery of heat to their outer surface.

It is practically impossible to experimentally determine the temperature field in the cross section of thermal
tubes because of the small [7] temperature gradients along all of their coordinate directions, the small sizes of these
tubes, and the errors introduced by thermocouples built into their body. Therefore, numerical modeling is most prob-
ably the main tool for solving the indicated problem.

The aim of the present work is to numerically simulate the temperature fields in the cross section of a low-
temperature thermal tube intersecting the zone of energy transfer from a heat-release source and, consequently, the

Journal of Engineering Physics and Thermophysics, Vol. 79, No. 2, 2006

Tomsk Polytechnical University, 30 Lenin Ave., Tomsk, 634034, Russia. Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol. 79, No. 2, pp. 161–167, March–April, 2006. Original article submitted May 21, 2004; revision submitted
February 25, 2005.

1062-0125/06/7902-0377 2006 Springer Science+Business Media, Inc. 377



evaporation zone of a coolant, by the example of thermal tubes made from different materials having very different
thermophysical parameters.

Formulation of the Problem. The most general problem on heat and mass transfer in a thermal tube, formu-
lated as early as 1974 [8], has not been solved numerically up till now. The axially symmetric model [9], accounting
for the main mechanisms of heat transfer [2] and many factors influencing the operating conditions of thermal tubes,
takes no account of the energy transfer along their peripheral coordinate. The extension of the approach proposed in
[9] to the three-dimensional formulation of the problem considered makes the calculation procedure very complex.
Therefore, we solved the indicated problem with the use of a nonstationary quasi-three-dimensional model of energy
transfer in a thermal tube, which accounts for the heat transfer not only along the peripheral and radial coordinates but
also (approximately) along the longitudinal coordinate. We considered the heat transfer in a system, the schematic dia-
gram of which is presented in Fig. 1.

A thermal tube (I) was simulated by a three-layer cylinder consisting of a body, a wick, and a vapor channel,
which was coupled with a connecting element (II) through an ideal thermal contact (Fig. 2). The problem was solved
with account for the heat transfer, arising due to the heat conduction in the body, wick, and vapor, and the thermal
evaporation of a coolant. At the boundaries of a computational region, the conditions of heat-flow inhomogeneity were
set. To take into account the energy transfer along the coordinate z, we introduced corresponding source terms into the
energy equations for the body, wick, and vapor channel. The problem was formulated with the following main as-
sumptions:

1) the thermophysical parameters in the region of the thermal tube are calculated as effective parameters with
account for the volume fraction of each component;

2) the flow rate of a liquid coolant flowing to the evaporation zone is equal to the flow rate of the vaporous
coolant in this zone (the mass-transfer process is stationary) and the coordinates of the evaporation boundary do not
change;

3) the thermophysical parameters (heat conduction, heat capacity) are temperature-independent;
4) the whole outer surface of the computational region is heat-insulated, except for the region x = 0,

0 ≤ y ≤ L (region of heat delivery);
5) the contacts at the interphase boundaries as well as at the boundaries between the thermal-tube body and a

condensate and between the tube and the connecting element are ideal;
6) the temperature difference ∆T along the length of the thermal tube is not larger than 3 K. Numerous ex-

perimental investigations [4] have shown that this value of ∆T is typical for well-operating tubes;
7) the processes of heat release in the condensation zone have no direct influence on the temperature field

formed in the evaporation zone.

Fig. 1. Diagram of the connecting element–thermal tube system.

Fig. 2. Simplified scheme of the computational region of the problem: I) ther-
mal tube; II) connecting element.
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As was already noted, the temperature drop in actual thermal tubes operating in the steady-state regimes com-
prises 3–4 K; this temperature drop is due to the interrelated processes of heat and mass transfer occurring simultane-
ously in a thermal tube and in its neighborhood.

The energy transfer in a low-temperature thermal tube is defined within the framework of the model proposed
by the following system of nonstationary differential equations with corresponding boundary conditions:
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The initial conditions have the following form:

τ = 0 ,   T1 = T0 ,   T2 = T0 ,   T3 = T0 ,   T4 = 0 . (5)

The boundary conditions are as follows:

r = 0 :   
∂T1

∂r
 = 0 , (6)
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y = L ,   ∆ ≤ x ≤ ∆ + R :   
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The mass rate of evaporation of a coolant is calculated by the formula

W = 
A (Psat

 − P)
√2πR0Tint

 ⁄ M
 . (20)

Method of Solution. The problem considered was solved by the finite-difference method with the use of par-
tial differential equations represented in the form of two-dimensional difference equations [10]. A change to a new
time layer was performed in two "fractional steps" by the splitting scheme [10]. The heat transfer along the coordi-
nates x and y in the connecting element was calculated in the first and second fractional steps, respectively, with the
use of one-dimensional difference equations. The heat transfer in the thermal tube was calculated along the coordinates
r and θ.

The system of one-dimensional difference equations was solved using the sweep method by the implicit
four-point difference scheme [10]. The pressure of the saturated vapor was determined by the Riedel–Planck–Miller
method [11].

The heat transfer in the connecting element was calculated using a rectangular difference grid. The heat trans-
fer in the thermal tube (in the three-layer cylinder) was calculated using a spherical difference grid. The rectangular
and spherical grids were conjugated at the interfaces between regions. A peculiarity of the problem is the existence of
locally concentrated, highly active sites of heat absorption in a small-thickness region in the coolant-evaporation zone.
The evaporation process was physically simulated only at one point, lying on the coordinate r of the difference
scheme, at which the evaporation conditions are realized. Therefore, in deciding on grid parameters, prominence was
given to the control of the conditions under which the iteration process converges. The steps were selected along the
time and space coordinates such that the conditions of iteration-process convergence were fulfilled.

Numerical calculations were carried out for the thermophysical parameters of the body and connecting element
of thermal tubes made from an aluminum alloy, a steel, and a composite and for the working medium NH3 (in the
liquid and vapor phases) [11, 12]. The quantity U was calculated by the mass rate of the vapor.
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Results and Discussion. Numerical investigations were carried out for thermal tubes with bodies and wicks of
an aluminum alloy, a steel, and a composite. In all cases, ammonia served as the coolant, and the specific heat trans-
ferred to the surface of a tube was equal to q = 10 W/m2. The values of the main parameters used in the investiga-
tions are presented in the Table 1.

Since we did not have literature data on the experimentally determined temperature fields in the bodies and
wicks of thermal tubes, it was difficult to directly substantiate the results of our numerical investigations of these
fields. The local temperatures determined, e.g., in [7], under the conditions of large temperature differences along the
axial coordinate of a thermal tube cannot be used for comparison with the corresponding calculation data because of
the absence of a complete set of initial data necessary for identification. Therefore, the reliability of the results ob-
tained was verified by internal testing. Grid parameters were selected after a steady-state regime of operation of a ther-
mal tube was established and the temperature field became independent of the steps along the space and time
coordinates. The criterion of the convergence of iterations was a 0.1% discrepancy between the temperature fields.

Figure 3 shows the temperature fields in the typical cross section of an aluminum tube, namely, in the evapo-
ration zone, after the establishment of a steady-state regime of operation of this tube. It is well seen that the tempera-
ture differences throughout the perimeter of the cross section considered do not exceed 0.5 K despite the fact that the
heat transfer conditions on the outer surface of this tube are very inhomogeneous. Analogous temperature fields are
presented in Fig. 3. for a steel tube. In the latter case, the maximum temperature difference in the cross section with
r = const is equal to 2.3 K. This difference cannot be also considered as large because the rates of coolant evaporation
at minimum and maximum temperatures of the evaporation surface differ only by 9–10%. This difference can be con-
sidered as a small deviation and can be disregarded when the parameters and conditions of heat transfer from heat-re-
lease sources to the thermal tube are determined.

For a thermal tube with a body and wick made from a composite, we obtained maximum temperature differ-
ences along its peripheral coordinate as compared to those of the other tubes considered (Fig. 3). However, even in
this case, the absolute temperatures at the outer boundary of the connecting element differed from those of a thermal
tube with a body and a wick made from an aluminum alloy by a value not larger than 25.9 K at identical geometric
characteristics and heat-transfer conditions. The results obtained allow the conclusion that an inhomogeneity of the
boundary conditions at the outer surface of a thermal tube does not influence the temperature distribution along its pe-
ripheral coordinate in the case where the body and wick of this tube are made from a material having a high heat
conductivity. If the body and wick of a thermal tube are made from a material having a low heat conductivity, the
body will be heated inhomogeneously and a temperature difference will arise along the angular coordinate; the value
of this difference will increase with decrease in the heat conductivity. However, in this case, the temperature at the
boundary between a radioelectronic device and the connecting element, characterizing the operating conditions of this
device, changes fairly moderately. In passing from an entirely aluminum thermal tube to an entirely composite thermal

TABLE 1. Thermophysical Parameters of Thermal Tubes

TT elements Material λ C ρ

Body Aluminum alloy 120 500 2700

Wick net » 60.251 2484 1691.5

Heat-transfer agent Ammonia 0.022 2160 0.8

Body Steel 45 32 561 7794

Wick net » 16.251 2514.5 4238.5

Heat-transfer agent Ammonia 0.022 2160 0.8

Body Composite 1.5 1700 1850

Wick net » 1.001 3084 1266.5

Heat-transfer agent Ammonia 0.022 2160 0.8

Note: For the wick, the effective heat conductivity, heat capacity, and density are given.
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tube, the temperature at the boundary between the connecting element and a heat-release source increases from 306.9
to 332.8 K under the typical operating conditions considered.

Numerical analysis of the energy transfer along the body of a thermal tube to its wick caused by the heat
conduction in the axial direction, has shown that the contribution of these elements of thermal tubes made from an
aluminum alloy, a steel, or a composite to their heat-transfer ability is not larger than 3–4% in the case where the op-
erating parameters of the tubes change in a fairly large range. Consequently, the heat transfer in the body and wick of
a thermal tube can be ignored in the process of simulation of its operation. It should be noted that a connecting ele-
ment of a metal or an alloy, having a high heat conductivity (e.g., aluminum), can play a more significant role in the
process of heat transfer. However, in this case, the mass of a temperature-control system, the basic elements of which
are thermal tubes, will be significantly increased, which prevents the miniaturization of radioelectronic devices. In sys-
tems that are not strictly limited in mass and specific consumption of materials (e.g., high-temperature thermal tubes
in temperature-control systems of nuclear power plants) the above-considered design of thermal tubes can be reason-
able and appears worthy of further investigation.

The data obtained allow one to determine special features of simulation of the heat transfer in thermal tubes.
Comparison of the results of the present work and the results obtained in [9] shows that mathematical simulation of
inhomogeneous temperature fields in the connecting-element–tube body–wick system gives fairly exact data on these
field. It is very difficult to experimentally determine the indicated fields because the characteristic sizes of the seal of
typical thermocouples (several tenths of a millimeter) are comparable with the cross-section sizes of the wick and the
body of thermal tubes (several millimeters).

It should be noted that a small number of available experimental data on the local temperatures at certain
points on the outer surface of thermal tubes were obtained with systematic and random errors. For example, the tem-
perature of the surface of a thermal tube is usually measured under the conditions of a fairly intensive heat exchange
with the environment, whose parameters (e.g., heat-transfer coefficient) are not controlled exactly or are measured with
large errors. Measurement of the temperatures of thermal tubes in experimental measuring systems is also accompanied
by a number of unavoidable processes leading, according to the data of [13], to large errors in determining the main
parameters of these tubes. Therefore, numerical simulation of the temperature fields in thermal tubes with the use of
known basic mathematical models [2, 8] and their modifications can be considered as an effective tool for estimating
the operating parameters of thermal tubes in various temperature-control systems. Integral experimental characteristics
(local temperatures of the outer surface of a thermal tube) are necessary for estimating the reliability of the corre-
sponding theoretical data.

Conclusions. The results of our investigations allow the conclusion that, when the body and wick of a ther-
mal tube are made from a material with a high heat conductivity, an inhomogeneity of the boundary conditions on the
outer surface of this tube has practically no influence on the temperature field in the tube cross section intersecting the
evaporation zone. In the case where the indicated elements of a thermal tube are made from a material having a low
heat conductivity, the temperature in the cross section of the tube depends on θ.

Fig. 3. Temperature distribution along the angular coordinate in the evaporation
zone at r = R: 1) aluminum; 2) steel; 3) composite. T, K; θ, deg.
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NOTATION

A, accommodation coefficient; a, thermal diffusivity, m2/sec; C, heat capacity, J/(kg⋅K); L, size of the heat-de-
livery zone, m; l, length of a tube, m; M, molecular weight, kg/mole; n

_
, normal to the outer surface of a thermal tube;

P, pressure, Pa; Q, phase-transition heat, J/kg; +q and −q, specific heat flows delivered and removed, W/m2; R, outer
radius of a thermal tube, m; r, radius, m; R0, universal gas constant, J/(mole⋅K); T, temperature, K; U, longitudinal ve-
locity component of a vapor flow propagating along the coordinate z, m/sec; W, mass rate of evaporation, kg/(m2⋅sec);
x, y, coordinates, m; ∆, distance from a heat source to the upper point on the symmetry axis of the body of a thermal
tube, m; ∆T, temperature difference along the longitudinal coordinate, K; θ, angular coordinate, rad; λ, heat-conductiv-
ity coefficients, W/(m⋅K); ρ, density, kg/m3; τ, time, sec; ϕ, fraction of the cross section of an element of a thermal
tube. Subscripts: 0, initial; 1, vapor phase; 2, wick zone; 3, body of a thermal tube; 4, connecting element; int, inter-
phase; ev, evaporation zone; con, condensation zone; sat, saturated; tr, transfer zone.
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